Test Details
Methodology
Liquid chromatography/tandem mass spectrometry (LC/MS-MS)
Result Turnaround Time
4 - 5 days
Use
Differential diagnosis of hypervitaminosis A. A combination of a low serum carotene level and a low vitamin A suggests inadequate vitamin A nutrition.
Specimen Requirements
Limitations
This test was developed, and its performance characteristics determined, by LabCorp. It has not been cleared or approved by the US Food and Drug Administration (FDA).
Custom Additional Information
Vitamin A is the name given to a group of biologically active, fat-soluble molecules that includes retinol, retinal and retinoic acid.1,2 These retinoid compounds are derived from the plant precursor molecule, β-carotene. β-carotene (also referred to as provitamin A) has a structure that consists of two molecules of retinal linked at their aldehyde ends.1 β-carotene is converted to vitamin A by intestinal absorptive cells and hepatocytes.1,2 Vitamin A is stored in the liver and transported to extrahepatic tissues bound to retinol binding protein and albumin.1 Both retinol and β-carotene levels are measured in plasma for assessing vitamin A inadequacy and/or toxicity.
Vitamin A exists in humans in several forms and is tightly controlled. Naturally occurring forms of vitamin A include retinol, retinol esters, retinal and retinoic acid. The alcohol form, retinol, predominates in the circulation, but it is too toxic for storage. Instead, the liver stores as retinyl esters - principally palmitate. The active form of vitamin A in the visual cycle is the aldehyde form, retinal. Retinoic acid is the form in tissues responsible for the biological actions of vitamin A in cellular division and differentiation.11
The most important measurand for the estimation of vitamin A status is circulating vitamin A as retinol. Serum retinol levels do not accurately reflect liver retinyl ester levels. Despite this limitation, serum retinol is still useful because the levels will diminish once the supply from the liver is diminished. The serum retinol level at which vitamin A deficiency occurs will coincide with the manifestation of night blindness, due to the interruption of the visual cycle by lack of retinal. Other more serious symptoms will occur later when retinoic acid is depleted by even less available hepatic retinyl esters.12
The body must acquire vitamin A from the diet in order to sustain a number of essential physiological processes.3 These include vision, organogenesis, tissue differentiation, immune function, reproduction, embryonic development and maintenance of healthy skin and barrier functions.3-7 More than five hundred genes are thought to be regulated by vitamin A.3
Vitamin A deficiency only manifests when liver stores are depleted by prolonged reduction of dietary intake.1,10 In healthy individuals, serum retinol concentrations are homeostatically controlled and do not begin to decline until liver reserves of vitamin A are dangerously low.2,4,10 The initial symptom of vitamin A deficiency is an inability to adapt vision to darkness (ie, night blindness).1 Vitamin A is an essential component of rhodopsin, a protein that absorbs light in the retinal receptors.2 Vitamin A also supports the normal differentiation and functioning of the conjunctival membranes and cornea.2 Protracted vitamin A deficiency causes degenerative changes in the retina due to progressive keratinization of the cornea, a condition referred to as xerophthalmia.2 In developing countries, vitamin A deficiency is the most common cause of preventable blindness.
Additional symptoms of vitamin A deficiency include follicular hyperkeratosis, increased susceptibility to infection and an anemia similar to iron deficient anemia.1 β-carotene is an important, but insufficient, source of vitamin A among poor populations due to the inefficiency of the conversion to retinol.5 Vitamin A deficiency in poor countries is also a significant cause of infection and death, particularly from diarrhea and measles.6
Excessive levels of vitamin A can lead to toxicity. Vitamin A intoxication is a concern in normal adults who ingest more than 15 mg per day and children who ingest more than 6 mg per day of vitamin A for a period of several months. The symptoms of acute vitamin A toxicity include dizziness, nausea, vomiting, headaches, blurred vision, vertigo, reduced muscle coordination, skin exfoliation.13,14 More chronic vitamin A toxicity symptoms include weight loss, fatigue cheilosis, glossitis, alopecia, bone demineralization, hypercalcemia, lymph node enlargement, hyperlipidemia and amenorrhea. Excess accumulation of vitamin A in the liver can also lead to hepatosplenomegaly, liver fibrosis with portal hypertension.1,13 Congenital malformations, including craniofacial abnormalities and valvular heart disease as well as spontaneous abortions have been reported in children born to pregnant women taking vitamin A in excess. A number of studies have reported an increased risk of lung cancer among high-risk individuals (smokers and asbestos workers) who were given high doses of β-carotene alone or in combination with other antioxidants.5
Toxicity generally results from excessive ingestion of vitamin A supplements but regular intake of large amounts of liver, although usually not a problem in vitamin A-deficient areas, may also result in toxicity due to its high content of vitamin A.15
The World Health Organization recommendations supplementation when vitamin A levels fall below 20.0 ug/dL.16 Severe deficiency is indicated at levels <10.0 ug/dL. 2,9,10
Specimen
Serum
Volume
0.8 mL
Minimum Volume
0.4 mL
Container
Red-top tube or gel-barrier tube
Storage Instructions
Room temperature
Causes for Rejection
Sample type other than serum received
Collection Instructions
If a red top is used, transfer separated serum to a plastic transport tube.
Stability Requirements
Temperature | Period |
---|---|
Room temperature | 7 days |
Refrigerated | 14 days |
Frozen | 14 days |
Freeze/thaw cycles | Stable x6 |
Reference Range
See table.
Age | Range (μg/dL) |
---|---|
0 to 30 d | Not established |
1 m to 5 y | 14.4 − 42.6 |
6 to 11 y | 18.2 − 45.7 |
12 to 19 y | 18.8 − 54.9 |
20 to 39 y | 18.9 – 57.3 |
40 to 59 y | 20.1− 62.0 |
>59 y | 22.0 − 69.5 |
Footnotes
LOINC® Map
Order Code | Order Code Name | Order Loinc | Result Code | Result Code Name | UofM | Result LOINC |
---|---|---|---|---|---|---|
017509 | Vitamin A, Serum | 2923-1 | 142004 | Vitamin A | ug/dL | 2923-1 |
Order Code | 017509 | |||||
Order Code Name | Vitamin A, Serum | |||||
Order Loinc | 2923-1 | |||||
Result Code | 142004 | |||||
Result Code Name | Vitamin A | |||||
UofM | ug/dL | |||||
Result LOINC | 2923-1 |